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Abstract. Biometric recognition based on finger-vein patterns is gain-
ing more and more attention, as several approaches have been recently
proposed to extract discriminative features from vascular structures. In
this paper we investigate the similarity between vein patterns of sym-
metric fingers of the left and right hand of a subject. More in detail, we
analyze the performance achievable when using symmetric fingers and
geometry- or deep-learning-based feature extraction methods for recog-
nition. A database with acquisitions from left and right index, medium,
and ring fingers of 106 subjects is exploited for experimental tests.

Keywords: Biometrics, Finger-Vein Recognition, Convolutional Neural
Networks

1 Introduction

Biometric systems are nowadays deployed in many practical applications requir-
ing human recognition with high-level security, such as border controls, smart-
phone unlocking, ATM cash withdrawals, and e-commerce to cite a few. Among
the exploitable biometric traits, vein patterns [9] have recently attracted a signif-
icant interest from industrial and academic communities, thanks to the several
advantages they can offer with respect to other traditional biometric identifiers.
In fact, the acquisition of vein patterns can be performed only in proximity
through a near-infrared (NIR) camera, being therefore hard to implement pre-
sentation attacks. Moreover, being possible to perform a contactless recording
of the interested train, vein-based biometric recognition systems ensure users’
comfort and ease of use. Additionally, liveness detection is intrinsically provided.

Different kinds of vein patterns have been analyzed in literature for recogni-
tion purposes, namely finger veins [15], palm veins [22], hand dorsal veins and
wrist veins [11]. For all the aforementioned traits, state-of-the-art approaches
used for extracting representative features from the structure of blood vessels
can be categorized into five classes:

– geometry-based [9, 10]: shape or topological structures are extracted from
vein patterns and used as discriminative information. Most methods are
based on the segmentation of the veins from the background, with features
then extracted from the obtained patterns;
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– statistical-based [13, 8]: statistical features, such as the local binary his-
togram and moments, are used to generate the employed templates;

– local invariant-feature-based [12]: algorithms such as scale invariant feature
transform (SIFT) or speeded-up robust features (SURF) are employed to
derive discriminative representations;

– subspace learning-based [17, 19]: methods such as linear discriminant analysis
(LDA) or principal component analysis (PCA) are used to extract features;

– deep learning-based techniques [2, 3]: deep neural networks are exploited to
learn discriminative representations from vein patterns. This latter approach
has recently attracted a significant interest, being for instance used in [3],
where two different light-weight CNNs have been examined for feature ex-
traction from finger vein patterns. Generative adverserial networks (GANs)
have been exploited for finger-vein-based biometric recognition in [20], while
the Densenet-161 network has been applied to composite samples created
from vein images in [16].

In this paper we focus on finger-vein biometric traits, and investigate the
existence of similarities between vein patterns of symmetrical fingers belonging
to left and right hands, in order to explicitly asses whether it could be possible,
for recognition purposes, to consider pairs of symmetric fingers of a subjects as
a single class. To the best of our knowledge, the aforementioned aspect has not
been analyzed so far in literature for finger-vein-based biometric applications,
while it has been evaluated when using palmprint [6, 18]. The research has high-
lighted the presence of shared patterns between the palmprints of both hands
of a person, allowing a user to be recognized through his/her left palmprint
even when only the other one has been recorded during enrolment. In order
to perform a comprehensive analysis, the SDUMLA database [21], comprising
finger-vein images from 106 users, with six samples for each of the left and right
hand index, middle, and ring fingers, has been considered. Moreover, four dif-
ferent methods, belonging to the geometry- and deep-learning-based categories,
have been exploited to derive the employed finger-vein feature representations.

2 Experimental Protocol
The purpose of the performed experimental tests is to verify whether finger-
vein patterns of different hands of the same subject have a higher degree of
similarity than traits belonging to different persons. To this aim, several tests
have been performed on the SDUMLA databas, estimating the distributions of
scores obtainable by comparing different classes of biometric samples, spcifically:

1. genuine scores are obtained by comparing vein patterns from the same finger
of the same hand of the same subject. For instance, vein patterns of the right
index of a subject are compared between themselves;

2. impostor scores are obtained by comparing veins from the same finger of the
same hand of different subjects. For instance, patterns of the right index of
a subject are compared with those of the right index of a different person;

3. genuine cross-hand (CH) scores are obtained by comparing veins from the
same finger of different hands of the same subject. For instance, the right
index of a subject is compared with the left index of the same person;
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Table 1: Score distributions evaluated in the performed tests.
Case Subject Hand Finger Scores

1 same same same genuine

2 different same same impostor

3 same different same genuine CH

4 same same/different different genuine CF

5 different same/different different impostor CF

4. genuine cross-finger (CF) scores are obtained by comparing veins from dif-
ferent fingers of the same subject. For instance, patterns of the right index
are compared with those of the right/left middle finger of the same person;

5. impostor cross-finger (CF) scores are obtained by comparing veins from dif-
ferent fingers of different subjects. For instance, the right index of a subject
is compared with the left/right middle finger of another person.

Table 1 summarizes the aforementioned combinations and the required scores.
On the basis of the computed distributions, the false rejection rate (FRR) and the
false acceptance rate (FAR) related to different scenarios have been evaluated:

1. Test-1 : standard scenario where each finger from each hand is taken as a
separate class, FRR and FAR are derived by considering respectively the
aforementioned genuine scores and impostor scores;

2. Test-2 : a näıve scenario where an impostor uses a finger different from the
one enrolled by the legitimate user is taken into account. FRR and FAR
respectively from genuine scores and impostor CF scores are evaluated;

3. Test-3 : in order to verify whether a subject could be recognized by using as
authentication probe the same finger of a hand different from the enrolled
one, FRR and FAR are derived by considering respectively genuine scores
and genuine CH scores;

4. Test-4 : the feasibility of using interchangeably the same finger of different
hands to be recognized is further investigated by evaluating the FRR and
FAR computed respectively on genuine CH and impostor scores;

5. Test-5 : eventually, the possibility of using as authentication probe fingers
different from the enrolled one is also evaluated by deriving FRR and FAR
respectively from genuine scores and genuine CF scores.

In order to obtain results from which reliable conclusions could be derived,
the aforementioned score distributions have been computed according to several
distinct processing methods described in the following section.

3 Finger-vein Recognition Methods

Score distributions have been computed by considering several different recogni-
tion methods, belonging to both geometry- and deep-learning-based approaches.

3.1 Geometry-based Finger-vein Recognition

Since the original vein images are typically characterized by low contrast, they
are first enhanced in order to improve their quality using a contrast limited
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adaptive histogram equalization (CLAHE) [23]. Finger boundaries are then ob-
tained by filtering the image with a mask [7]. Eventually, the finger is rotated
and aligned to the image center as described in [4]. Finger vein patterns are
extracted from finger areas using the following feature extraction methods:

1. Maximum Curvature (MC) [10]: scores related to veins width and curvature
are assigned to positions where vein centers are located, which are then
connected using filtering operations. Binary vein images are then obtained
by thresholding the computed patterns;

2. Principal Curvature (PC) [1]: the image gradient field is computed, and noise
components filtered out by means of hard thresholding. Values of principal
curvature are first computed by considering the eigenvalue corresponding to
the eigenvector of the Hessian matrix related to the maximum curvature,
and then binarized to generate the desired template;

3. Wide Line Detector (WLD) [4]: vein positions are extracted by considering
circular neighborhoods of each pixel, and computing differences between the
center and its neighbors. The final binary image is determined by counting
the number of pixels inside this neighborhood.

The obtained binary vein patterns are trimmed and then compared using the
correlation-based method proposed in [9] and [10], with the maximum correlation
used as matching score.

3.2 Deep-learning-based Finger-vein Recognition
Along with standard geometry-based recognition methods, tests have also been
performed exploiting convolutional neural networks (CNNs) to obtain discrim-
inative representations from finger-vein images. Since the target of the present
study is not proposing a novel network architecture, an effective CNN, namely
Densenet-201 [5], has been employed in the tests. Specifically, the final layers
of a Densenet-201 architecture, that is, those performing classification after the
extraction of discriminative features, have been substituted with:

– a batch-normalization layer, followed by a dropout regularization with 50%
of hidden units dropped;

– a fully-connected and a batch-normalization layers producing C outputs,
being C the number of unique identities considered for training.

Densenet’s weights have been initialized with those estimated for an image
classification task over Imagenet [14], while a unit weight initialization has been
adopted for the batch normalization layer, and Glorot uniform initialization
preferred for the fully-connected layers. The layers have been then updated using
a cross-entropy (CE) loss function for back-propagation, with stochastic gradient
descent (SGD) and a batch size of 64. Learning rate has been set to ε = 0.01
and divided by 10 after each 30-epoch iteration. Momentum with α = 0.9 has
been used, as well as an L2 weight decay regularization penalty with λ = 0.025.
The maximum number of training epoch is set to 90, with early stopping in
case the validation loss is minimized. In the testing phase, the features extracted
by the employed network from two input finger-vein samples are compared by
evaluating a cosine distance as score, to make geniune/impostor verification.
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Table 2: EERs (in %) over the SDUMLA database for the performed tests.
Method Test-1 Test-2 Test-3 Test-4 Test-5

MC 8.94 8.36 9.93 46.73 9.73

PC 11.70 11.07 12.81 46.64 12.95

WLD 13.66 12.72 14.50 45.56 14.66

CNN 1.02 0.54 1.73 32.62 1.69

4 Results and Discussion

The equal error rates (EERs) achieved with the considered recognition meth-
ods for each of the test conditions presented in Section 3 are reported in Table
2. It is worth mentioning that, since the standard approaches in Section 3.1
do not require any specific training, the associated performance has been com-
puted considering all the available 106 × 3 × 2 = 636 classes. Conversely, the
results regarding the proposed CNN-based approach have been obtained while
reserving the first half of the 106 subjects in the SDUMLA dataset for testing
purposes, with the remaining 53 subjects used for CNN training. More in detail,
two different training methodologies have been considered:

– to compute the scores associated with the distributions employed for Tests
1-3 and 5, the network has been trained with each finger of each hand of
53 subjects representing a different class. A total of C = 53 × 3 × 2 = 318
finger-vein classes have been therefore taken into account in this case. For
each class, five out of the six available samples have been used for model
training, with the remaining one employed for model validation;

– the scores of the distributions used for the considered Test 4, where the
feasibility of using interchangeably the same finger of different hands to be
recognized is analyzed, have been generated considered a network trained
with the same fingers of different hands taken as the members of the same
class. A total of C = 53 × 3 = 159 classes have been therefore taken into
account in this case. As left-right finger samples are put in the same category,
each class is now represented with a total of 12 samples, 10 of which are
fed into the model for training, while the remaining 2 samples are used for
validation. Doing this, the network is trained to look for similarities between
same fingers of different hands and associate them to the same class, thus
allowing to evaluate the existence of such shared patterns.

The obtained results show that a pair of same fingers from different hands
do not posses similarities that allow the user to be recognized when one finger is
used for enrollement and the other one for recognition. This is evident by com-
paring the EERs achieved in Test-1 and Test-3, which are basically the same,
meaning that scores generated by comparing same fingers from different hands
of the same subject are similar to those obtained when comparing same fingers
of different subjects. Actually, the former comparison seems to find some more
similarities than the latter, as testified by the slightly worse EERs. Yet, such sim-
ilarities cannot be assumed to be significant. Training a CNN while considering
CH fingers as belonging to the same class further reinforce this considerations,
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Fig. 1: Scores for the MC-based method. Left: genuine, impostor, and genuine
CH distributions; Right: impostor, impostor CF, and genuine CF distributions.

Fig. 2: Scores for the PC-based method. Left: genuine, impostor, and genuine
CH distributions; Right: impostor, impostor CF, and genuine CF distributions.

Fig. 3: Scores for the WLD-based method. Left: genuine, impostor, and genuine
CH distributions; Right: impostor, impostor CF, and genuine CF distributions.

Fig. 4: Scores for the CNN-based method. Left: genuine, impostor, and genuine
CH distributions; Right: impostor, impostor CF, and genuine CF distributions.
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Table 3: Kullback-Leibler divergences with respect to genuine scores.
Method impostor genuine CH genuine CF impostor CF

MC 2.232 2.129 2.144 2.297

PC 1.877 1.761 1.747 1.956

WLD 1.718 1.658 1.633 1.790

CNN 0.237 0.106 0.058 0.281

as shown by the notably-high EER achieved in Test-4, which means the CNN
cannot find shared patterns between pairs of fingers associated to the same class.

Interestingly, results in Test-5 also show that different fingers of the same
subject share slightly more similarities than the same finger of different persons.
Eventually, results in Test-2 suggest that the same fingers of different individuals
are more similar than different fingers of different persons. Such resemblance may
not necessarily spring from vein patterns, as it may depend on the geometric
similarity of same fingers’ shapes.

In order to provide further evidence of the observed behaviors, the computed
score distributions are reported in Figures 1 - 4, where a training with 318
classes has been considered for the CNN-based approach. Genuine CH scores
show basically the same distribution of impostor scores using geometry-based
approaches, while resorting to CNNs highlights the existence of some similarities
between pairs of symmetric fingers. CNNs are also able to generate slightly-
different distributions for impostor, impostor CF and genuine CF scores, while
geometry-based approaches cannot.

The distribution separations are quantitatively evaluated through the Kullback-
Leibler divergences reported in Table 3, where the values obtained when eval-
uating the separation of impostor, impostor CF, genuine CH, and genuine CF
distributions from that of genuine scores are considered. As can be seen, for
CNNs genuine CH and genuine CF scores are slightly closer to the genuine ones
than the impostors, while impostor CF scores are even farther.

5 Conclusions

A study regarding the similarity of the vein structure of symmetrical fingers
of the hands for the purpose of biometric recognition has been conducted. The
obtained results show that, although symmetrical fingers of the same subject
show more resemblance than same fingers from different persons, such similarities
are not significant enough to be exploited for recognition purposes.
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